

DESCRIPTION OF SAP BEETLES, *CAROPOPHILUS HUMERALIS* (FABRICIUS, 1798) (COLEOPTERA: NITIDULIDAE) FROM ERBIL GOVERNORATE KURDISTAN REGION, IRAQ

Gazanc Tahir Omer*, Nabeel A. Mawlood and Nawzad B.Kadir

College of Agriculture, University of Salahaddin, Iraq.

Abstract

Sap beetles, *Caropophilus* https://en.wikipedia.org/wiki/Carpophilus_dimidiatus *humeralis* (Fabricius, 1792) from Erbil governorate, Kurdistan region – Iraq is described. The specimens were collected from dried and fermented figs during April - September of 2018. The members of taxon are easily to be distinguished, where the mandibles bidenticated. Antenna 11 segmented ending in three club shorter than the stem. Elytra shiny black exposing three abdominal segments. Adeagus nearly L-shaped laterally. Parameters are sinuous, dagger shaped, curved to a sharp tip. The important taxonomic parts have been photographed, includes labrum; mandibles; antennae; protibiae, elytra, 5th abdominal sternites, spiculum gastrale and

male genitalia.

Key words : Coleoptera; Nitidulidae; Description; *Caropophilus* <u>https://en.wikipedia.org/wiki/Carpophilus_dimidiatus</u> *humeralis*; Kurdistan Region; Iraq.

Introduction

Sap beetles, family Nitidulidae Latreille, 1802 consist of more than 4500 described species worldwide, with diverse feeding habits, but mostly saprophagous and mycetophagous are feeding on decaying fruits and fermented plant tissues or dead animal tissue (Parsons, 1943; Hinton, 1945; Hayashi 1978; Jelinek et al., 2010). These beetles can be also vector mycotoxin producing fungi to corn and strawberries (Dowd and Nelson, 1994). Some species occur on carrion, especially that in the last stages of decay where bones, dried tissue and sinews and hide are all that remain. Many species occur in decaying plant material ranging from compost and fermenting fruits, to mouldy grains and hay, under bark of recently dead trees and in compost. Some species are found on sap-flows or fermenting wounds on trees, hence the common name sap-beetle (Martin, 1977). Carpophilus Stephens, 1930 is important genus of the family which includes approximately 200 species distributed mainly in tropical and template regions of the World (Dobson, 1954; Gillogly, 1962; Leschen and Marris, 2005; Brown et al., 2012). Several species of the genus

*Author for correspondence : E-mail : gazang.omar@su.edu.krd

are important pests of crops and stored products, and are frequently intercepted as part of biosecurity operations. Many species are scavengers of rotting fruit, with both adults and larvae feeding on this substrate. Some species are also known to attack fruit on the tree, which are decreasing the commercial value of the crop, and they are considered to be important pests in orchards and agricultural situations. Carpophilus davidsoni Dobson, C. hemipterus (Linnaeus) and C. mutilatus Erichson have been emerged as serious pests of stone fruit in Australia (Hossain and Williams, 2003; James et al., 1997). Several species are known agricultural pests of field and stored products. These include the dusky sap beetle, Carpophilus lugubris Murray on field and sweet corn; the corn sap beetle, Carpophilus dimidiatus on field corn; the complex *Carpophilus dimidiatus* (F.), Carpophilus freemani Dobson and Carpophilus mutilatus Erichson on stored maize (Arbogast and Throne, 1997). A lesser group of these beetles are regarded as economically important pests of stored products worldwide, in particular several species of the cosmopolitan genus Carpophilus which affect stored grain and products, dry fruits, oilseeds, cacao, and many

other commodities (Audisio, 1993; Artigas, 1994; Jelinek et al., 2016). Some species, like C. mutilatus Erichson, C. hemipterus and C. dimidiatus, are relevant in food industry when developing in accumulations of fruits because of the indirect damage, and they can cause as vectors of fruit diseases that seriously spoil the stored product (Leschen and Marris, 2005; Barth et al., 2009). *Carpophilus humeralis* (Fab.) is an agricultural pest in many of the warmer parts of the world. It feeds on ripe fruit, transmits plant disease, and contaminates commercial products (Connell, 1981). The classification of the genus is confusing because there is no global treatment of the group, apart from world catalogue of then 191 know species by Williams et al., (1983). There are six subgenera in Palearctic region (Jelinek, 2005), but all species have not been placed into these grouping. In Iraq, Derwesh (1965) indicated three species, which include Carpohilus hemipterus (L.), C. fumatus Boh. and C. dimidiatus (Fabricius). Al-Ali (1977) recorded four species, involving Carpohilus. hemipterus (L.); C. dimidiatus (Fabricius); C. obsoletus Erichson and C. lingneus Murr.

Materials and Methods

The specimens were collected from dried and fermented figs in different localities at Erbil governorate, Kurdistan region - Iraq during April - September of 2018. The specimens were placed in boiling water for 10-15 minutes to soften their parts. Then the parts were separated and put in 10% KOH then placed in water bath for 10-15 minutes. After that placed in distilled water for 2-3 minutes in order to neutralize the alkali. These parts are placed in ethyl alcohol 25% and dissected under binocular microscope. The measured proportions of body parts are given in points of an evepiece linear micrometer in a binocular microscope (Lane and Crosskey, Khalil et al., 2018). Taxonomic identification was done using keys and descriptive comparative works on Carpophilus published by nitidulid experts, mainly: (Hinton, 1945; Dobson, 1954; Prado, 1987; Audisio, 1993; Leschen and Marris, 2005 and Jelinek et al., 2010). Males was treated in hot 10 percent potassium hydroxide solution for three hours to facilitate this section. Mouthparts, eighth abdominal sternite, Spiculum gastrale and genitalia were dissected out under a binocular microscope. These structures were washed by distilled water, and transferred to 70 percent ethyl alcohol. The habitus and important parts have been photographed through a digital camera (Canon Digital IXUS 9515). Studied and identified specimens are deposited in the plant protection museum at College of Agriculture-University of Salahaddin. The species was confirmed by the help of Prof. Dr. Hussam Aldin Abdullah From College of Agriculture, Baghdad University and Asist. Prof. Dr. Hanna Hani Al-safar in Iraq Natural History Research Center and Museum – University of Baghdad.

Results and Discussion

Carpophilus humeralis (Fabricius) 1798.

Synonymes

Nitidula humeralis Fabricius, 1798. Ent.Syst.Suppl., 74

Brachypterus picinus Boheman, 1851. Boheman, Ins.Caffr. 1(2):560.

Carpophilus rickseckeri Fall, Trans. Amer. ent.Soc., 36:124.

Carpophilus foveicollis Murray, 1864

Description

Body (Male) Figs. (1 a,b and c)

Oval, shining black, subflattend dorsally and moderately convex ventrally. Length 2.7 - 4.1 mm and breadth 1.6-2.2 mm.

Head

Head black, broad but distinctly narrower than the pronotum with a rounded shallow high densely of punctures about 2.5 times as coarse of facets of eye. Eves prominent, dark brown, rounded 0.2-0.3 mm long. Clypus indistinct, slightly porrect. Labrum (Fig. 2 a) brown, bilobed, nearly rounded, posterior margins densely dark vellow setose. Mandibles (Fig. 2b) symmetrical, heavily sclerotized, bidenticated, outer dentics 2 times as long the inner, dorsal surface bare. Maxilla (Fig. 2c) browdark brown moderately sclerotized, lacinia yellow, broad and rounded at tip with densely dark yellow setose, maxillary palps dark brown, 4th segment cylindrical, bare 3 times as long as the 3rd segment. Labium brown, 3rd segment of labial palps cylindrical shaped 2 times as long as 2nd. Antenna (Fig. 2d) brown - dark brown and 0.7-1.1 mm long, consist of 11 segments ending in three club shorter than the stem; and the segments are sparsely dark brown setose. The 1st is enlarged and often widened on the outside, 1.8 times as long as 2nd segment; 2nd and 3rd segments cylinderical, 2nd about 1.2 times as long as 3rdsegment; 9th and 10th segments cup shaped, 9th 1.2 as long as 10th; 11 segment sub-triangle as long as 9th segment. Antennal grooves moderately deep and convergent.

Thorax

Pronotum shiny black, moderately convex as broad as the elytra, it is broadest at the base, 1.6-2.1mm long and much broader than the long. Lateral margin moderately arcuate when seen from side, with apical part twice as thick as basal. Surface with punctures is slightly deeper than those of head. Scutellum shiny black, triangle shaped; 2/3 of apical contains small punctures. Elytra (Fig. 2f) shiny black, nearly rectangular, 1.4-1.8 mm long and 0.9-1.2 mm breadth exposing three abdominal segments. Apical margin of elytra with small yellow round spot, surface densely punctate like pronotum with short, black moderately dense of setae. Hind wings hyaline. Prosternum rectungule, shiny black, with coarsely punctures densely than the pronotum. Prosternal process widened and rounded posteriorly, reaching the mesosternum. Mesosternum trapezoidal without medial longitudinal carinae. Metasternum nearly rectangular 0.5-0.7 mm long, with medial longitudinal carinae. Legs are brown short, fore coxa (Fig. 2e) conical, fore femur nearly cylindrical, expanded at the middle, protibia triangle shaped, and apical part contains two small spurs and 3-4 short spines. protarsal 5 segmented. 1st - 3rd segments are cup shaped and densely vellow fine setose. The 4th segment is the smallest; while 5th segment long tubular, 3 times as long as the 3rd. fore claws are simple, long, weak and slightly curved. Middle legs are resemble to fore legs except coxa, which is oval shaped, mesotibia cyliderical and longer. Hind legs are resemble to fore legs except, metacoxae, as they are bot shaped, metatibia cyliderical and longer.

Abdomen

Abdomen shiny black, with 5 visible sternites. 1st -4th abdominal sternite transverse, anterior and posterior edge nearly striate. The 4th sternite is the longest about 3 times as long as 3rd sternite. Posterior margin of 5th sternite (Fig. 2i) is a round deep depression occupying of middle, the sternites with dense, fine pale yellow setae. In dorsal view, there are seven abdominal visible tergites, three of apical tergites (including pygidium) are exposed. Tergits 1st -6th are transverse, 1st -4th tergites are subequal in length. 6th tergite 1.2 as long as 5th. Pygidium cup shaped, apical margin oval. 8th tergite bot like, heavily sclerotized, surface with dense small dark brown setae. Spiculum gastrale (Fig. 2h) dark brown nearly inverted cup shaped, apical part sticky shaped equal in length with basal part.

Male genitalia (Figs. 2 h, i and j)

Aedeagus in lateral view (Figs. 2 h and i) browndark brown, 0.6 -0.9 mm long, nearly L-shaped. Parameres are sinuous, dagger shaped, heavily sclerotized, gradually curved to a sharp tip, distal part with short dark brown setae on both inner and outer margins; aedegal apophysis narrow and slender, wide at base, 0.9-1.2 mm; inner sac very long, 7-3.2 mm and tubular shaped, curved, more wavy on posterior half, and plate in inner sac is elongated oval. Dorsal view (Fig. 2j): Parameres elongated oval, apex pointed, sides are subparallel, apical margin with high density of short dark brown setae; phallobas V-shaped. Median lobe parallel to paramers, finger shaped, apical part acute.

Female

Visually is similar to the male except as follows : The posterior margin of 5th sternite is rounded without

(a)

(b)

Fig. 1: *Carpophilus humeralis* (Fabricius) 20X a. Dorsal view b. Lateral view c. Ventral view depression. Apical margin of pygidium is strait.

Acknowledgements

We wish to express our sincere gratitude to Prof. Dr. Hussam Aldin Abdullah from College of Agriculture, Baghdad University and Asist. Prof. Dr. Hanna Hani Alsafar in Iraq Natural History Research Center and

Fig. 2: Carpophilus humeralis (Fabricius)

a. Labrum b. Mandible c. Maxilla d. Antennae e. Fore leg f. Elytra g. 5th Abdominal sternites h. Spiculum gastrale i. Aedeagus(lateral view) j. Aedeagus (Lateral view) k. Aedeagus(Dorsral view) (Scale bars; All figures = 0.5mm except Fig. J = 0.25mm)

Museum – University of Baghdad for their helps to confirm the species.

References

- Al-Ali, A.S. (1977). Phytophagous and entomophagous insects and mites of Iraqi Natural History Research Center, Publishing, 33:142.
- Abogast, R.T. and J.E. Throne (1997). Insect infestation of farm stored maize in South Carolina; Towards characterization of a habitat. *Journal of Stored Products Research*, **33(3):** 187-198.
- Artigas, J.N. (1994). Entomología econ_omica: Insectos de inter_es agrícola, forestal, m_edico y veterinario (nativos, introducidos y susceptibles de ser introducidos),vol. 2. Ediciones Universidad de Concepci_on, Chile.
- Audisio, P. (1993). "Coleoptera Nitidulidae Kateretidae". In: Fauna d'Italia. Ed. by Calderini. Vol. 32. Bologna: Calderini.
- Barth, M., T.R. Hankinson, H. Zhuang and F. Breidt (2009). Microbiological spoilage of fruits and vegetables. In: Sperber, W.H., Doyle, M.P. (Eds.), Compendium of the Microbiological Spoilage of Foods and Beverages, Food Microbiology and Food Safety. Springer Science

bBusiness Media. LLC.

- Brown, S.D.J., K.F. Armstrong and R.H. Cruickshank (2012). Molecular phylogenetics of a South Pacific sap beetle species complex (Carpophilus spp., Coleoptera: Nitidulidae). *Mol. Phylogenet. Evol.*, 64: 428-440.
- Connell, W.A. (1981). Bibliography of Carpophilus humeralis (Fab.) in Support of a Revision of the Genus Carpophilus Stephens. Bulletin of the Entomological Society of America, **27(4)**: 263-266.
- Dobson, R. (1954). The species of Carpophilus Stephens (Col. Nitidulidae) associated with stored products. *Bull. Entomol. Res.*, **45:** 389-402.
- Dowd, P.F. and T.C. Nelson (1994). Seasonal variation of sap beetle (Coleoptera: Nitidulidae) populations in central Illinois cornfield-oak woodland habitat and potential influence of weather patterns. *Environmental Entomology*, 23: 1215-1223.
- Drewesh, A.I. (1963). A Preliminary list of Colleoptera from Iraq. *Technical Bulltetin*, **13:** 1-38.
- Gillogly, L. (1962). Coleoptera: Nitidulidae. Insects of Micronesia, 16(4): 133-188.
- Hayashi, N. (1978). A contribution to the knowledge of the larvae of Nitidulidae occurring in Japan (Coleoptera: Cucujoidea). *Insecta Matsumurana new series*, 14: 1-97.
- Hinton, H.E. (1945). A monograph of the beetles associated with stored products., vol. 1. London: British Museum (Natural History).
- Hossain, M.S. and D.G. Williams (2003). Phenology of carpophilus beetle populations (Coleoptera: Nitidulidae: Carpophilus spp.) in a fruit dump in northern Victoria. *Australian Journal of Experimental Agriculture*, **43**: 1275-1279.
- Jelinek, J., C. Carlton, A.R. Cline and R.A.B. Leschen (2010). Chapter 10.26. Nitidulidae Latreille, 1802. In: R.A.B. Leschen, R.G. Beutel and J.F. Lawrence (Eds.), Handbook of Zoology, Arthropoda: Insecta, Coleoptera, Beetles, Vol.

2: Morphology and Systematics. De Gruyter, Berlin, New York, 390-407.

- James, D.G., R.J. Faulder, B. Vogele, R.J. Bartelt and C.J. Moore (1997). Phenology of Carpophilus spp. (Coleoptera: Nitidulidae) in stone fruit orchards as determined by pheromone trapping: Implications for prediction of crop damage. *Australian Journal of Entomology*, **36**: 165-173.
- Jelinek, J., P. Audisio, J. Hajek, C. Baviera and B. Moncourtier et al. (2016). Epuraea imperialis (Reitter, 1877). New invasive species of Nitidulidae (Coleoptera) in Europe, with a checklist of sap beetles introduced to Europe and Mediterranean areas. AAPP physical, Mathematical, and natural sciences. Accad. Peloritana de, 94(2): 1-24.
- Khalil, S.M., N.A. Mawlood, H.Q. Hamamurad and A.M. Peerbal (2018). A New record of sap feeding- beetles, *Nitidula flavomaculata* Rossi, 1790 (Nitidulidae: Coleoptera) from Iraq. Zanco Journal of Pure and Applied Sciences ZJPAS, **30(4):** 90-95.
- Lane, R.P. and R.W. Crosskey (1993). Medical insects and Arachnids. The Natural History Museum. Chapman and Hall, London. 1-28.
- Leschen, R.A.B. and J.W.M. Marris (2005). *Carpophilus* (Coleoptera: Nitidulidae) of New Zealand with Notes on Australian Species. Landcare Research New Zealand Ltd., 40.
- Martin, J.E.H. (1977). The insects and arachnids of Canada Part 1. Collecting, preparing and preserving insects, mites and spiders. Agriculture Canada Publication 1643, 182.
- Parsons, C.T. (1943). A revision of Nearctic Nitidulidae (Coleoptera). Bulletin of Comparative Zoology, 92: 121-248.
- Prado, E. (1987). Elgenero *Carpophilus* Stephens (Coleoptera: Nitidulidae) en Chile. *Rev. Chil. Entomol.*, **15:** 27-32.
- Stephens, J.F. (1830). *Illustrations of British Entomology*, **3:**1-374.